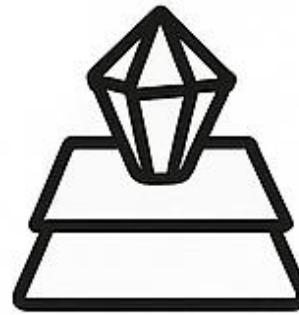


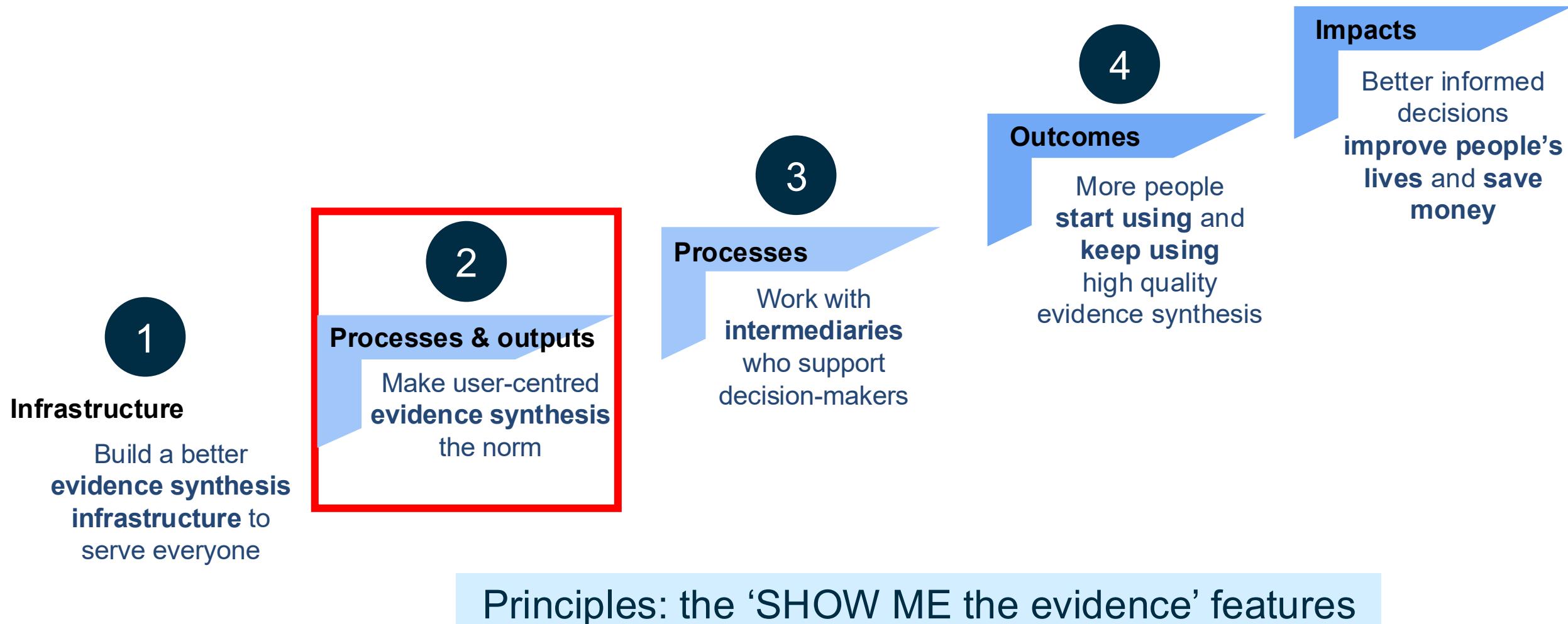
EVIDENCE FOR
BIG
DECISIONS

Better evidence, better decisions, better lives

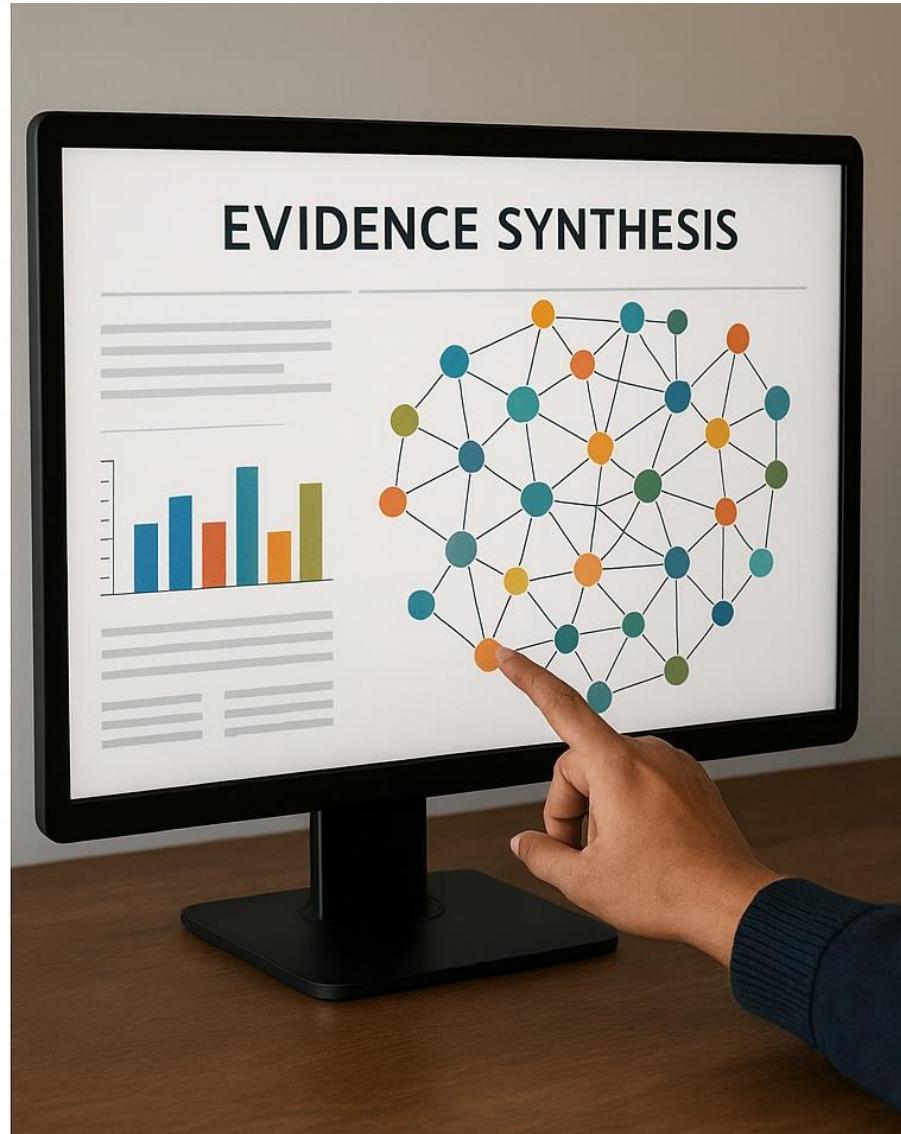
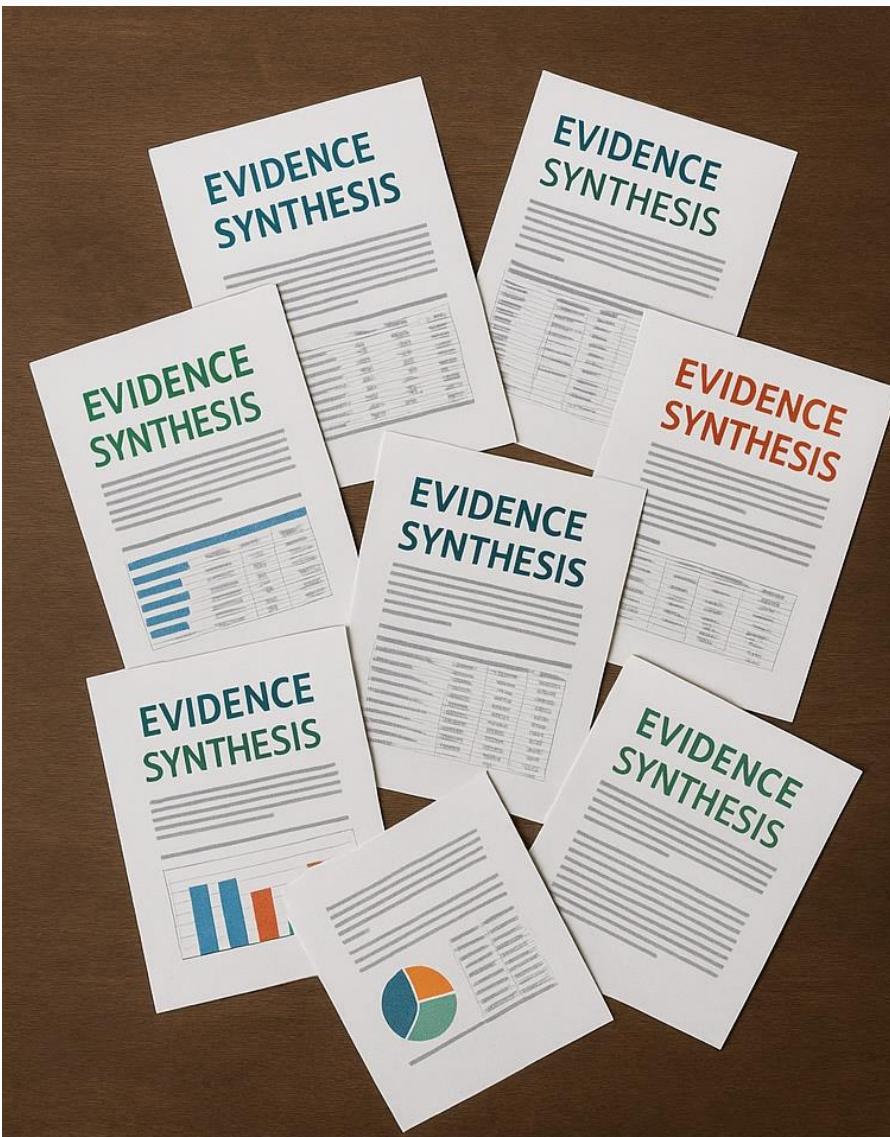

Decision-makers lack timely, user-ready evidence for major decisions

High-stakes challenges (climate, conflict, inequality, pandemics) demand fast and trust-worthy evidence

ESIC envisions a step-change: AI-enabled synthesis designed to serve real-world needs



ESIC positions evidence for big decisions as central to overcoming the fragmented and inefficient status quo

The new norm: timely, affordable, co-produced and embedded into decision-making

ESIC: a cornerstone of the global evidence architecture

'Business as usual' falls short

Different names, shared aspirations

**POLICY-SCALE
META-LES
BIG QUESTIONS**

Defining policy-scale synthesis?

Policy-scale synthesis is the systematic integration of diverse evidence streams aligned to policy-relevant intervention or outcome families, often spanning multiple domains.

They are designed to be iteratively updated and provide decision-ready, actionable insights.

Depending on context and topic, these syntheses may be modular and combinable (e.g., in social policy), or more holistic (e.g., COVID-19 network meta-analysis).

What does ‘policy-scale’ add?

Policy questions require navigating multiple syntheses →
Alignment to real policy agenda

Decision-makers seek evidence organised around real-world challenges → Multiple and clustered intervention and outcome categories

Real world problems are cross-cutting → Modular and combinability

Are they different to current products?

Existing product	Description	How 'policy-scale' could be different
Umbrella reviews/reviews of reviews	Reviews of systematic reviews/syntheses: aggregates multiple reviews on related topics	Policy-scale synthesis actively reorganises and harmonises across intervention families, outcomes, and contexts, enabling modular recombination
Evidence databases/registries (e.g. PROSPERO, Epistemonikos)	Valuable and structured collections of evidence, not synthesis; requires user navigation; no interpretation	Provides interpretation, insight, and guidance, not just storage — and aligns to policy families
EGMs/living maps	Descriptive, useful for finding and navigating evidence, does not answer synthesis questions	interprets impacts, implementation and contextual factors (and possibly cost) not just location of evidence
Guidelines and toolkits (e.g. EEF)	Curated actionable summaries	Perhaps the same/similar? Major difference is in active approach to combination, integration and transparent metadata across sectors?

Policy-scale at different levels

Decision scale	Use of synthesis	Users	Example
Policy area	Resource allocation and strategy	Senior political, policy and public service leaders	Reduce crime and deliver fair and efficient justice
Goal	What approach to take	Senior managers of public services and political leaders	Reduce harm from violent extremism
Options	What specific interventions to use	Managers of public service	Prevent violent radicalization
Intervention	How to do a specific intervention most (cost) effectively	Staff of public services	Counter-narratives for the prevention of violent radicalisation

Different models, shared aspirations

Model	Sector	Synthesis Format	What It Enables
COVID-NMA	Health	Unified, living evidence synthesis	Real-time view of COVID-19 treatment and vaccine effectiveness
Teaching & Learning Toolkit	Education	Linked, user-facing toolkit	Compare interventions by impact, cost & evidence strength
Global SDG Synthesis Coalition	Multi-sector (SDGs)	Modular syntheses by thematic buckets	Actionable insights across SDG themes using mixed methods

The COVID-NMA initiative

Isabelle Boutron

Centre for Research in Epidemiology and Statistics (CRESS)
Cochrane France
Université Paris Cité, INSERM,

Toward a new research ecosystem

Journal of Clinical Epidemiology 123 (2020) 135–142

EVIDENCE SYNTHESIS ECOSYSTEM SERIES

Future of evidence ecosystem series: 1. Introduction Evidence synthesis ecosystem needs dramatic change

Isabelle Boutron^{a,b,c,d,*}, Perrine Crequit^{b,c,d}, Hywel Williams^b, Joerg Meerpohl^b, Jonathan C. Craig^b, Philippe Ravaud^{a,b,c,d}

^aINSERM, UMR1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), METHODS Team, Paris, France
^bCentre d'Épidémiologie Clinique, AP-HP (Assistance Publique des Hôpitaux de Paris), Hôpital Hôtel Dieu, Paris, France
^cFrench Cochrane Center, Paris, France
^dDirection de la recherche Clinique, Hôpital Bichat, Paris, France

^eParis Descartes University, Sorbonne Paris Cité, Faculté de Médecine, Paris, France

^fCentre d'Épidémiologie Clinique, AP-HP (Assistance Publique des Hôpitaux de Paris), Hôpital Hôtel Dieu, Paris, France

^gParis Descartes University, Sorbonne Paris Cité, Faculté de Médecine, Paris, France

^hInstitute for Evidence in Medicine (For Cochrane Germany Foundation), Institute of the University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany

ⁱCollege of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia

^jDepartment of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA

Accepted 7 January 2020; Published online 04 March 2020

Abstract

Objectives: This article presents why the planning, conduct, and reporting of systematic reviews and meta-analyses of therapeutic interventions are suboptimal.

Study Design and Setting: We present an overview of the limitations of the current system of evidence synthesis for therapeutic interventions.

Results: Systematic reviews and meta-analyses are a cornerstone of health care decisions. However, despite the availability of published systematic reviews of therapeutic interventions, the current system of evidence synthesis is not properly addressing stakeholders' needs. The current production process leads to a series of disparate systematic reviews because of erratic and inefficient planning with a process that is not always comprehensive and is prone to bias. Evidence synthesis depends on the quality of primary research, so primary research that is available is biased or selectively reported raises important concerns. Moreover, the lack of interactions between the community of primary research producers and systematic reviewers implies the optimal use of data. The context has considerably evolved, with primary research producers and systematic reviewers using the optimal use of data. The context has considerably evolved, with primary research producers and systematic reviewers using the optimal use of data. The context has considerably evolved, with primary research producers and systematic reviewers using the optimal use of data. All these changes must be integrated into the future evidence ecosystem.

Conclusion: Dramatic changes are needed to enable this future ecosystem to become user driven and user oriented and more useful for decision-making. © 2020 Published by Elsevier Inc.

Keywords: Systematic review; Evidence synthesis; Clinical study report; Automation; Crowdsourcing; Living network meta-analysis

^{*} Corresponding author. Centre d'Épidémiologie Clinique, Hôpital-Dieu, 1 place du Parvis Notre Dame, 75004 Paris, France. Tel.: +33 (0)1 42 34 89 87; fax: +33 (0)1 34 87 90.

E-mail address: isabelle.boutron@chph.fr (I. Boutron).

<https://doi.org/10.1016/j.jclinepi.2020.01.024>
0895-4356/© 2020 Elsevier Inc. All rights reserved.

Journal of Clinical Epidemiology 123 (2020) 143–152

EVIDENCE SYNTHESIS ECOSYSTEM SERIES

Future of evidence ecosystem series: 2. current opportunities and need for better tools and methods

Perrine Crequit^{b,c,d}, Isabelle Boutron^{a,b,c,d}, Joerg Meerpohl^b, Hywel C. Williams^b, Jonathan C. Craig^b, Philippe Ravaud^{a,b,c,d,*}

^aINSERM, UMR1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), METHODS Team, Paris, France
^bCentre d'Épidémiologie Clinique, AP-HP (Assistance Publique des Hôpitaux de Paris), Hôpital Hôtel Dieu, Paris, France
^cFrench Cochrane Center, Paris, France
^dDirection de la recherche Clinique, Hôpital Bichat, Paris, France

^eParis Descartes University, Sorbonne Paris Cité, Faculté de Médecine, Paris, France

^fCentre d'Épidémiologie Clinique, AP-HP (Assistance Publique des Hôpitaux de Paris), Hôpital Hôtel Dieu, Paris, France

^gParis Descartes University, Sorbonne Paris Cité, Faculté de Médecine, Paris, France

^hInstitute for Evidence in Medicine (For Cochrane Germany Foundation), Institute of the University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany

ⁱCollege of Evidence-Based Dermatology, University of Nottingham, Nottingham, United Kingdom

^jCollege of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia

^kDepartment of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA

Accepted 7 January 2020; Published online 04 March 2020

Abstract

To become user driven and more useful for decision-making, the current evidence synthesis ecosystem requires significant changes (Paper 1, Future of evidence ecosystem series). Reviewers have access to new sources of data (clinical trial registries, protocols, and clinical study reports from regulatory agencies or pharmaceutical companies) for more information on randomized control trials. With all these newly available data, the management of multiple and scattered trial reports is even more challenging. New types of data are also becoming available, such as electronic health records and administrative databases. The challenge is to extract the relevant data from these different sources and to extract the process needs to be rethought. New approaches and tools, such as automation technologies and crowdsourcing, should help accelerate the process. The implementation of these new approaches and methods requires a substantial rethinking and redesign of the current evidence synthesis ecosystem. The concept of a "living" evidence synthesis enterprise, with living systematic review and living network meta-analysis, has recently emerged. Such an evidence synthesis implies conceptualizing evidence synthesis as a continuous process built around a clinical question of interest and no longer as a small team independently answering a specific clinical question at a single point in time.

Keywords: Systematic review; Evidence synthesis; Clinical study report; Automation; Crowdsourcing; Living network meta-analysis

Journal of Clinical Epidemiology 123 (2020) 153–161

EVIDENCE SYNTHESIS ECOSYSTEM SERIES

Future of evidence ecosystem series: 3. From an evidence synthesis ecosystem to an evidence ecosystem

Philippe Ravaud^{a,b,c,d,*}, Perrine Crequit^{b,c,d}, Hywel C. Williams^b, Joerg Meerpohl^b, Jonathan C. Craig^b, Isabelle Boutron^{a,b,c,d}

^aINSERM, UMR1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), METHODS Team, Paris, France
^bCentre d'Épidémiologie Clinique, AP-HP (Assistance Publique des Hôpitaux de Paris), Hôpital Hôtel Dieu, Paris, France
^cFrench Cochrane Center, Paris, France
^dDirection de la recherche Clinique, Hôpital Bichat, Paris, France

^eParis Descartes University, Sorbonne Paris Cité, Faculté de Médecine, Paris, France

^fCentre d'Épidémiologie Clinique, AP-HP (Assistance Publique des Hôpitaux de Paris), Hôpital Hôtel Dieu, Paris, France

^gParis Descartes University, Sorbonne Paris Cité, Faculté de Médecine, Paris, France

^hInstitute for Evidence in Medicine (For Cochrane Germany Foundation), Institute of the University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany

ⁱCollege of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia

Accepted 7 January 2020; Published online 06 March 2020

Abstract

The "one-off" approach of systematic reviews is no longer sustainable; we need to move toward producing "living" evidence syntheses (i.e., comprehensive, based on rigorous methods, and up-to-date). This implies rethinking the evidence synthesis ecosystem, its infrastructure, and management. The three distinct production systems—primary research, evidence synthesis, and guideline development—should work together to allow for continuous refreshing of synthesized evidence and guidelines. A new evidence ecosystem, not just focusing on synthesis, should allow for bridging the gaps between evidence synthesis, guidelines, primary research, and the wider health care system. Stakeholders should reflect on how to make the ecosystem more sustainable. A new evidence ecosystem should consider a priority topic. For each question, a multidisciplinary community including researchers, health professionals, guideline developers, policymakers, patients, and methodologists needs to be established and commit to performing the initial evidence synthesis and keeping it up-to-date. Encouraging communities to work together continuously with bidirectional interactions requires greater incentives, rewards, and the involvement of health care policy authorities to optimize resources. A better evidence ecosystem with collaborations and interactions between each partner of the network of evidence synthesis stakeholders should permit living evidence syntheses to justify their status in evidence-informed decision-making. © 2020 Elsevier Inc. All rights reserved.

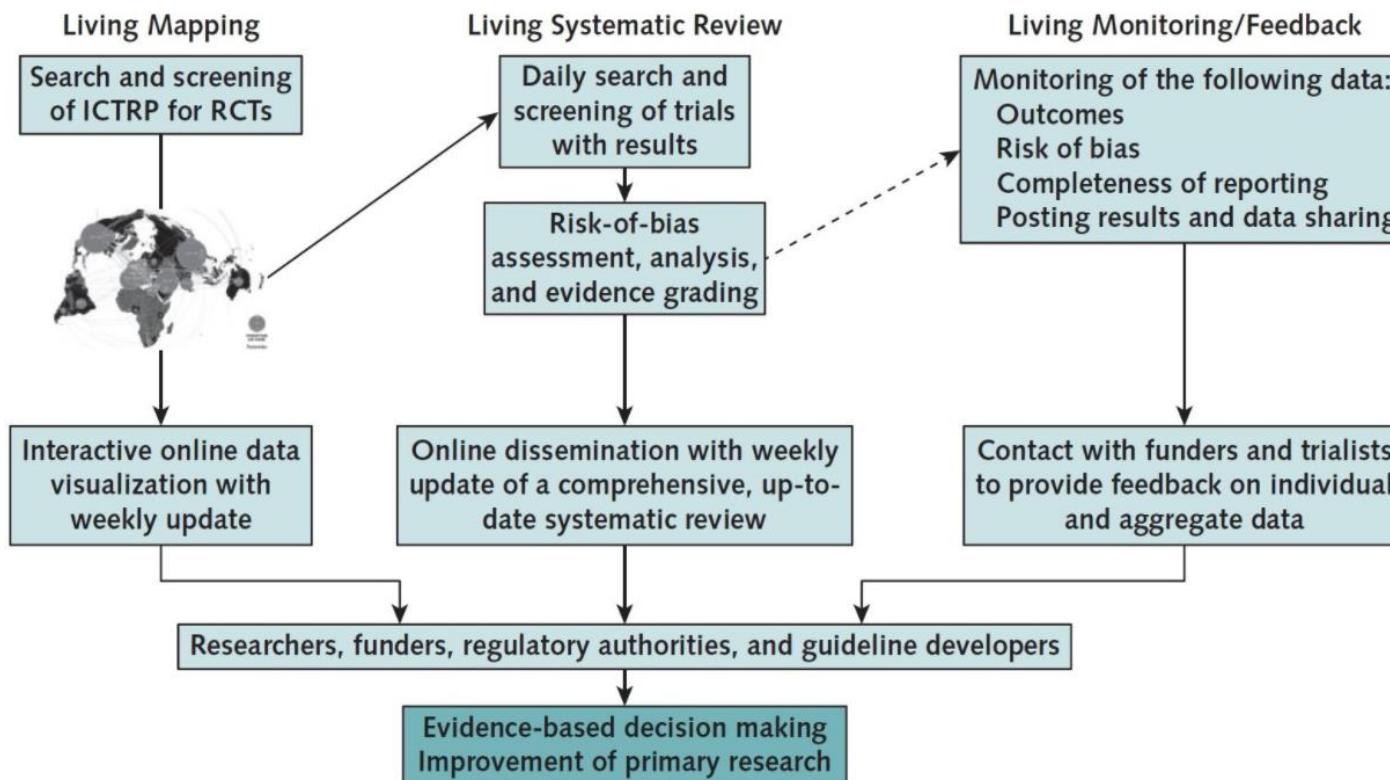
Keywords: Systematic review; Evidence synthesis; Evidence ecosystem; Evidence synthesis; Living evidence; Primary research; Living meta-analysis; Living evidence synthesis; Living systematic review; Living monitoring of quality; Living guidelines

Boutron, Crequit (....), Ravaud. *J Clin Epidemiol* 2020
Crequit, Boutron (...) Ravaud *J Clin Epidemiol* 2020
Ravaud, Crequit (...) Boutron. *J Clin Epidemiol* 2020

are converging in new ways to produce higher quality evidence syntheses (i.e., based on more rigorous methods and a timely, comprehensive search) for better health care decision-making. However, these developments imply rethinking the evidence synthesis ecosystem, its infrastructure and management, and to move toward an evidence ecosystem.

For clinical research, we can no longer afford the "one-off" approach of systematic reviews relying on repeated cycles of extraction and reconstruction of ephemeral review teams in a "staccato" fashion [2]. A system based on multiple initiatives arising from uncoordinated groups of researchers working to answer narrow questions focusing on only some

* Corresponding author. Centre d'Épidémiologie Clinique, Hôpital-Dieu, 1 place du Parvis Notre Dame, 75004 Paris, France. Tel.: +33 (0)1 42 34 89 87; fax: +33 (0)1 34 87 90.

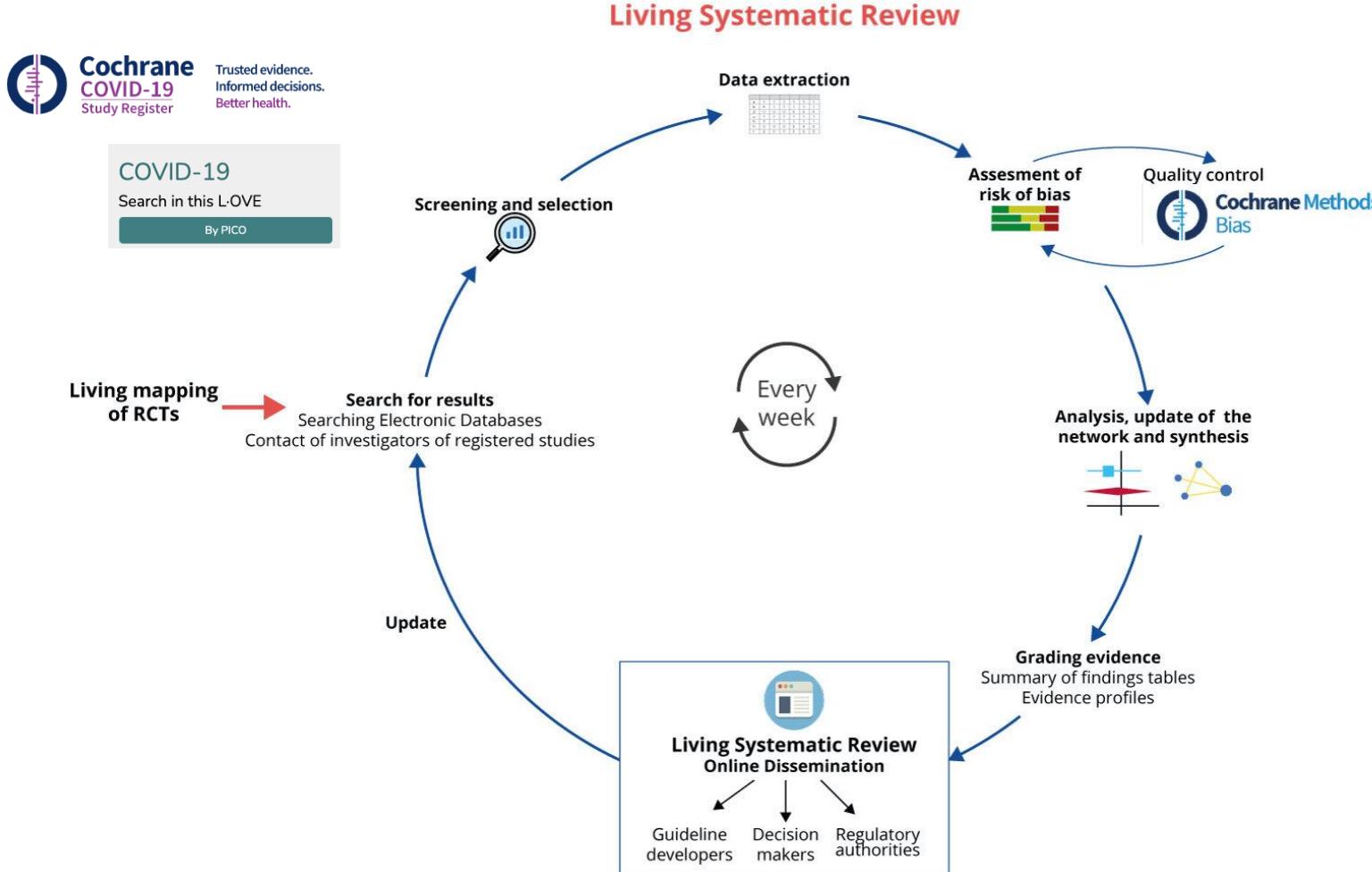

E-mail address: philippe.ravaud@chph.fr (P. Ravaud).

<https://doi.org/10.1016/j.jclinepi.2020.01.027>

0895-4356/© 2020 Elsevier Inc. All rights reserved.

The COVID-NMA Project: Building an Evidence Ecosystem for the COVID-19 Pandemic

Isabelle Boutron, MD, PhD; Anna Chaimani, PhD; Joerg J. Meerpohl, MD; Asbjørn Hróbjartsson, MD, PhD, MPhil; Declan Devane, PhD; Gabriel Rada, MD; David Tovey, MBChB; Giacomo Grasselli, MD; and Philippe Ravaud, MD, PhD, for the COVID-NMA Consortium*



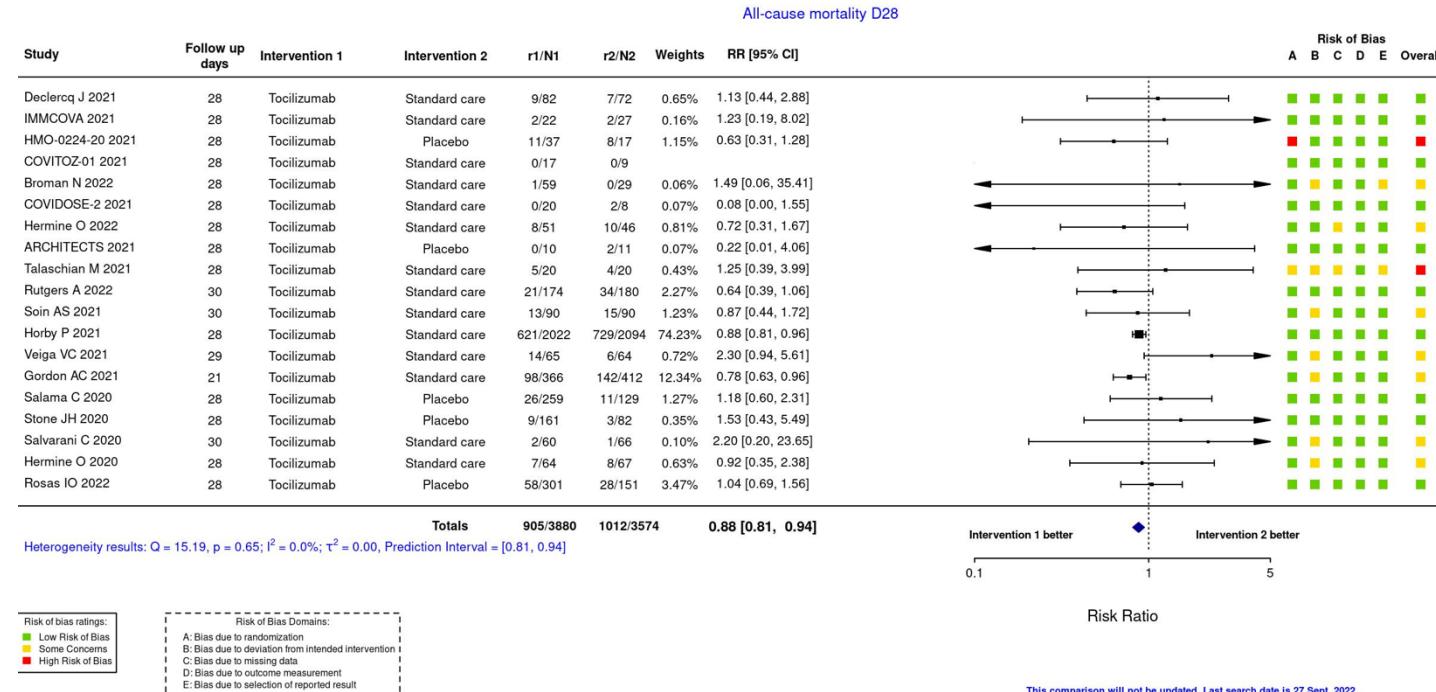
Scope: All treatments and vaccines for COVID-19

Living systematic review

>43 000 citations screened

- A living protocol scalable to stakeholders' evolving needs
- Strong quality control process
- Development of tools: preprint tracker
- Contact of trialists at the outset
- Request missing data

Results communication: Open access platform


The COVID-NMA platform: covid-nma.com

Study general characteristics

Risk of bias assessment with justification for all outcomes

Forest plots

Grading of the evidence (SOF tables)

Tools to allow stakeholders to perform their own analyses

metaCOV ID
Real-time meta-analyses of COVID-19 trials

Select options

Select treatment comparison: Tocilizumab vs Standard care/I

Select an outcome: Mortality D28

Meta-analysis options

Type of model: Random-effects

Heterogeneity estimate method: Restricted maximum likelihood

Population of interest: All populations

Subgroup analysis

Severity, Conflicts of interest, Funding, Location, Type of Control, No subgroup analysis

Sensitivity analysis

Risk of bias: All studies

Exclude preprints: No

Missing outcome data: As non-events (randomized patients in the denominator)

Presentation options

Hide treatment dose: Yes

Hide population severity: Yes

Download Forest plot | Reset all choices

All-cause mortality D28

Study	Follow up days	Intervention 1	Intervention 2	r1/N1	r2/N2	Weights	RR [95% CI]
TOCOVID 2021	28	Tocilizumab	Standard care	0/136	0/134		
Rosas IO 2021	28	Tocilizumab	Placebo	78/434	41/215	4.70%	0.94 [0.67, 1.33]
IMMCOVA 2021	28	Tocilizumab	Standard care	2/22	2/27	0.15%	1.23 [0.19, 8.02]
HMO-0224-20 2021	28	Tocilizumab	Placebo	11/37	8/17	1.09%	0.63 [0.31, 1.28]
COVITOZ-01 2021	28	Tocilizumab	Standard care	0/17	0/9		
Broman N 2022	28	Tocilizumab	Standard care	1/59	0/29	0.05%	1.49 [0.06, 35.41]
COVIDOSE-2 2021	28	Tocilizumab	Standard care	0/20	2/8	0.06%	0.08 [0.00, 1.55]
Hermine O 2022	28	Tocilizumab	Standard care	8/51	10/46	0.77%	0.72 [0.31, 1.67]
COV-AID 2021	28	Tocilizumab	Standard care	9/81	7/72	0.62%	1.14 [0.45, 2.91]
ARCHITECTS 2021	28	Tocilizumab	Placebo	0/10	2/11	0.06%	0.22 [0.01, 4.06]
Talaschian M 2021	28	Tocilizumab	Standard care	5/20	4/20	0.41%	1.25 [0.39, 3.99]
Rutgers A 2021	30	Tocilizumab	Standard care	21/174	34/180	2.16%	0.64 [0.39, 1.06]
Soin AS 2021	30	Tocilizumab	Standard care	13/90	15/90	1.17%	0.87 [0.44, 1.72]
Horby P 2021	28	Tocilizumab	Standard care	621/2022	729/2094	70.74%	0.88 [0.81, 0.96]
Veiga VC 2021	29	Tocilizumab	Standard care	14/65	6/64	0.69%	2.30 [0.94, 5.61]
Gordon AC 2021	21	Tocilizumab	Standard care	98/366	142/412	11.76%	0.78 [0.63, 0.96]
Salami C 2020	28	Tocilizumab	Placebo	26/259	11/128	1.21%	1.18 [0.60, 2.31]
Stone JH 2020	28	Tocilizumab	Placebo	9/161	3/82	0.33%	1.53 [0.43, 5.49]
Salavarani C 2020	30	Tocilizumab	Standard care	2/60	1/66	0.10%	2.20 [0.20, 23.65]
Hermine O 2020	28	Tocilizumab	Standard care	7/64	8/67	0.60%	0.92 [0.35, 2.38]
Rosas I 2021	28	Tocilizumab	Placebo	58/301	28/151	3.31%	1.04 [0.69, 1.56]
Totals							
Heterogeneity results: Q = 15.40, p = 0.75; I^2 = 0.0%; τ^2 = 0.00							
Intervention 1 better							
Intervention 2 better							
0.1 1 5							
Risk Ratio							
Forest plot produced at: 05/19/2022 Data source: the COVID-NMA initiative (covid-nma.com)							

Risk of bias ratings: Low Risk of Bias (Green), Some Concerns (Yellow), High Risk of Bias (Red)

Risk of Bias Domains: A: Bias due to randomization, B: Bias due to deviation from intended intervention, C: Bias due to missing outcome data, D: Bias due to outcome measurement, E: Bias due to selection of reported result

Conclusion

>900 studies were identified, extracted, assessed for risk of bias and analyzed

> 4634 registered trials extracted

The protocol and the platform considerably evolved over time

- Inclusion of observational data to assess vaccine effectiveness against variants
- Reduction of the scope for analyses where appropriate

Wide use of the data

South African National Department of Health
Brief Report of Rapid Review
Component: COVID-19

TITLE: REMDESIVIR FOR COVID-19: EVIDENCE REVIEW OF THE CLINICAL BENEFIT AND HARM

Date: 15 FEBRUARY 2022 (sixth update of the initial 16 April 2020 rapid review report)

Key findings

- We conducted a rapid review of available clinical evidence about use of remdesivir, with or without other medicines, for patients with COVID-19.
- We identified a systematic review including eleven RCTs (n=8137) which includes the latest trial data in a cohort of ambulatory patients (www.covid-nma.com).
- Remdesivir is likely to make little or no difference to all-cause mortality at 14 to 28 days, when initiated in hospitalised patients (RR 0.90 95% confidence interval (CI) 0.73 to 1.11, six trials, n = 7553, *moderate certainty evidence due to imprecision*).
- One study in ambulatory patients found a reduction in the composite end-point of hospitalisation and death at 28 days (RR 0.28 CI 0.1 to 0.74), although both treatment and placebo arms recorded no deaths by 28 days.
- Remdesivir is not associated with an increased risk of adverse events compared with placebo (RR 1.00 95% CI 0.91 to 1.11, 4 trials, n = 2752, *low certainty evidence* due to risk of bias in included trials and unexplained heterogeneity).
- We identified no reports of clinical trials with remdesivir specifically conducted in paediatric patients with COVID-19, but did note that the trial conducted in ambulatory patients included a small number of patients (n=8) aged between 12 and 18 years.

Appendix 3: Forest plots for Cochrane Living Meta-analysis: Remdesivir 10 or 5 days vs Placebo for Moderate/Severe COVID-19

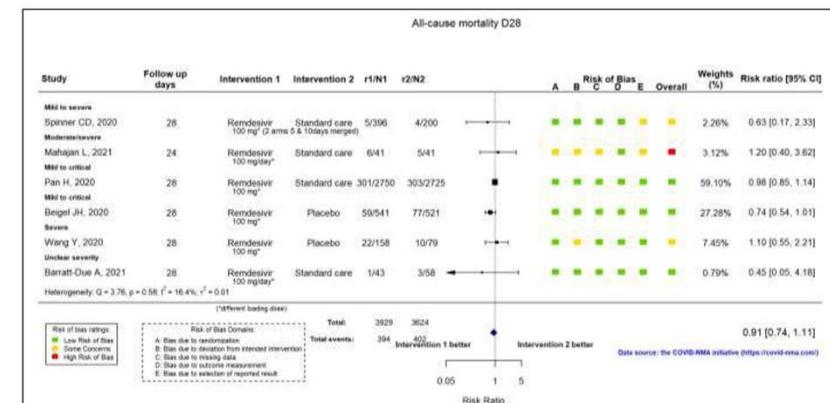
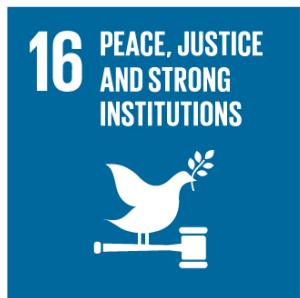
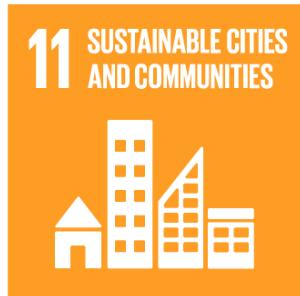




Figure 1: All-cause mortality, D28; Remdesivir 5 or 10 days versus standard of care

SDGs

169

targets!

What is a policy-scale question/scope?

Partnerships Pillar (SDG 17): whole of SDG17; it was broad and shallow; findings ended up general and not actionable.

Peace Pillar (narrower focus on priorities in SDG 16.1 and 16.4 – homicides and conflict-related deaths): Still not perfect but a narrower scope enabled clearer framing and (hopefully) more useful and actionable findings.

- A single synthesis trying to cover an entire SDG goal or pillar may risk:
- Conceptual overload (too many interventions, mechanisms, outcomes)
- Methodological sprawl (wide-ranging evidence bases across sectors)
- Practical failure (inability to produce actionable insights)

Combinable SDG16 'buckets' example

Bucket (Intervention / thematic family)	Relevant SDG targets	Cross-pillar relevance	Possible policy-scale scope / relevance
Violence prevention & protection	16.1, 16.2, 16.4	People, Prosperity	<ul style="list-style-type: none"> • Homicides and conflict-related deaths • Violent crime reduction • Child protection systems • Trafficking / organised crime disruption • Community safety & situational prevention • Safe schools / youth violence prevention
Equitable & just societies	16.3, 16.6, 16.7	People, Prosperity	<ul style="list-style-type: none"> • Justice system reform & access to justice • Legal aid, ADR • Transparency, accountability & anti-corruption • Inclusive governance & public administration reform
Legal identity	16.9	Peace, People	<ul style="list-style-type: none"> • National ID / CRVS system strengthening • Social registry interoperability • Foundational identification for service access, inclusion & social protection
Violence against women & children	SDG 16, SDG 5	Peace, People	<ul style="list-style-type: none"> • VAWC legal frameworks & enforcement • Multisectoral service delivery models • Prevention programming • Safe reporting mechanisms • Survivors' rights & protection systems

How to operationalise?

‘Manufacturing’ pipelines and infrastructure

- Define policy priority families (sectoral and regional hubs)
- Agree taxonomies for repositories (or clever tech-based means of aligning different taxonomies)
- Define core outcomes and contextual metadata
- Conduct modular syntheses (aligned in approach and with an eye on combinability, across sectors, hubs and work packages)
- Generate dashboards and toolkits
- Maintain via living review processes
- Support intermediaries
- Evaluate uptake and update priorities